The effects of lighting on autonomic control of the heart

¹ New School of Architecture & Design San Diego, California

Eve Edelstein¹

Robert J. Ellis^{2*}

John J. Sollers, III²

Julian F. Thayer²

² The Ohio State University Columbus, Ohio

*ellis.306@osu.edu

Introduction

- Vagally-mediated heart rate variability (HRV) is an independent risk factor for morbidity and mortality^{1,2}
- Higher resting HRV associated with better health, self-regulation of behavior, and control of attention^{3,4,5}

Introduction

- HRV influenced by changes in lighting
 - normal circadian fluctuations in HRV attenuated in office environments with minimal natural light⁶
- Non-cycled lighting environment harmful to organism health
 - linked with increased error rates in hospital pharmacies⁷
 - linked with increased cancer rates in nighttime nursing staff⁸

Experiment

- Purpose: investigate changes in HRV while performing a mental task ("auditory two-back") in two lighting conditions (red vs. white)
 - red light: 638 nm; 20 lux @ 20" distance
 - white light: 463 nm; 576 lux @ 20" distance

Task: Auditory two-back

- test of working memory⁹
- 80 Consonants presented once every three seconds: "... C ... D ... B ... D ..."
- Two possible responses
 - "target": consonant identical to the one presented two earlier (prob ≈ .33)
 - "non-target": all other consonants

Experimental Set-up

Illustration of a Lightbook¹⁰

Experimental Procedure

HRV Recording

- seven 225-s windows
- inter-beat interval (IBI) time series analyzed using a fast Fourier transform
- examined spectral power in high-frequency (HF) band (.15 to .4 Hz)
 - vagal influences on HRV maximal in this band

Data Analysis

- *n* = 16
- 3 periods of interest in each light cond.:
 - "Light on": Ss rest while light is on
 - "Task": Ss perform task
 - "Recovery": Ss rest while light is on
- ANOVA Design:
 2 (Light Cond.) x 3 (Period)

Data Analysis

- Dependent Measures
 - HF-HRV and IBI reactivity scores
 - baseline levels subtracted from each Period
 - Also used baseline HF-HRV as a independent variable (median split)
- Planned comparisons: quadratic trends
 - Tests whether HRV is lower during "task" than during "light on" and "recovery"

- effect size: $\eta^2 = (SS_{effect}) / (SS_{effect} + SS_{error})$

HF-HRV reactivity

IBI reactivity

HF-HRV: low baseline HRV group

HF-HRV: high baseline HRV group

IBI: low baseline HRV group

IBI: high baseline HRV group

Discussion

- Significant quadratic trends were found in the red light condition but <u>not</u> the white light condition
- A quadratic trend indicates a context-appropriate physiological response
 - Iower HRV while attention is engaged;
 higher HRV during periods of rest
 - indicates conservation of energy and flexible adapting

Discussion

- Subjects found red light condition more pleasant than white light condition
 - Rated pleasantness on scale of 1 to 5
 - $[F(1,14) = 18.44, p < .001, \eta^2 = .57]$
- Pleasantness of lighting condition can thus be linked to an individual's ability to mount a context-appropriate physiological response

Discussion: baseline HRV

- For both HF-HRV and IBI, quadratic trends were <u>more pronounced</u> in subjects who had high (vs. low) baseline HF-HRV
- This agrees with previous findings: high resting HRV is associated with greater potential for behavioral and physiological flexibility

Conclusion

 These data have implications for architectural design and health care facilities where constant levels of illumination are implicated as stressors related to increased health risk.

References

- 1. Thayer, J., & Lane, R. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. *J. of Affective Disorders*, *61*, 201–216.
- 2. Thayer, J., & Lane, R. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. *Biological Psychology*, *74*, 224–42.
- 3. Friedman, B.H., & Thayer, J.F. (1998). Autonomic balance revisited: Panic anxiety and heart rate variability. *Journal of Psychosomatic Research*, *44*, 133–151.
- 4. Backs, R., & Seljos, K. (1994). Metabolic and cardiorespiratory measures of mental effort: the effects of level of difficulty in a working memory task. *International Journal of Psychophysiology*, *16*, 57–68.
- 5. Hansen, A., Johnsen, B., & Thayer, J. (2003). Vagal influence on working memory and attention. *International J. of Psychophysiology*, *48*, 263–74.

References

- 6. Thayer, J. F., Christie, I. West, A. Sterling, C. Abernethy, D. Cizza, G., et al. (2006) The Effects of the Physical Work Environment on Day/Night Differences in Heart Rate Variability. *Psychophysiology*, *43*, S97-S98. Research 46th Annual Meeting. session III number 98. Oct. 25, 2006. Vancouver.
- 7. Buchanan TL, Barker KN, Gibson JT, Jiang BC, Pearson RE. (1991) Illumination and errors in dispensing. *Am J Hosp Pharm.*, *48*, 2137–45.
- 8. Ancoli-Israel S, Cole R, Alessi C, Chambers M, Moorcroft W, Pollak CP (2003). The role of actigraphy in the study of sleep and circadian rhythms. Sleep, 26, 342–92.
- 9. Jonides, J., Schumacher, E., Smith, E., Lauber, E., Awh, E., & Minoshima, S. (1997). Verbal working memory load affects regional brain activation as measured by PET. *J. Cog. Neuroscience*, *9*, 462–475.
- 10. www.litebook.com/products/litebook-prodinfo.asp