
  

  

Abstract—We present a novel statistical paradigm for 
modeling and analysis of gait variability which captures the 
natural point process structure of gait intervals and allows for 
definition of new measures instantaneous mean and standard 
deviation. We validate our model using two existing data sets 
from physionet.org. Results show an excellent model fit and 
yield insights into the underlying statistical structure behind 
human gait. Statistical analyses further corroborate previous 
findings of increased variability in gait at different speeds, both 
self-paced and metronome-paced, and reveal a significant 
increase in gait variability in Parkinson’s subjects, as 
compared to young and elderly healthy subjects. These results 
indicate the validity of a point process approach to the analysis 
of gait, and the potential utility of incorporating instantaneous 
measures of gait into diagnostic or patient monitoring 
applications. 

I. INTRODUCTION 
 HE temporal dynamics of human gait, like other 
complex physiological signals (e.g., cardiac and 

respiratory chronotropism), is characterized by moment-to-
moment fluctuations [1]. Variability is small (roughly 2% 
around the mean) in healthy adults, but increases 
dramatically in patients with Parkinson’s disease (PD) and 
Huntington’s disease [2]. Increased gait variability, 
particularly in the time domain (i.e., between successive heel 
strikes), has a serious effect on patient well-being: as PD 
progresses, up to 50% of PD patients will experience 
multiple falls per year [3]. A number of prospective studies 
have directly linked increased stride time variability with 
increased fall risk in PD (reviewed in [4]).  

Over the years, a number of time domain, frequency 
domain, time–frequency analyses, and non-linear methods 
of gait have been utilized to explore the temporal aspects of 
gait (for reviews, see [1], [4-6]). None of these methods, 
however, has focused on a highly desirable and clinically 
relevant parameter: a real-time, instantaneous measure of 
stride variability. Such a measure could provide a window  
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into the underlying dynamics during brief periods of 
impairment in PD, such as turning, entering a doorway, or 
transitioning over different floor surfaces (e.g., [7]). 

Furthermore, all previous analyses have treated stride time 
variability data as a continuous-valued, stationary signal that 
is sampled as a time series. However, the time between 
successive strides is more accurately characterized as a point 
process: that is, a sequence of discrete occurrences in 
continuous time [8]. The recent application of point-process 
statistics to heartbeat dynamics [9-11] is particularly 
relevant to the present topic, as heartbeats (i.e., successive 
electrical R-waves) and footfalls (i.e., heel strikes) exist in 
the same time scale (e.g., 60–90 per minute). Specifically, a 
history-dependent inverse Gaussian (HDIG) point-process 
model of time interval dynamics yields precise probabilistic 
definitions of interval variability that can be updated at any 
desired time resolution [9]. Model goodness-of-fit is also 
provided as a standard component of the analysis 
framework, via a Kolmogorov–Smirnov (KS) test derived 
from the time-rescaling theorem [12]. 

The present paper serves as a proof-of-concept illustration 
of the application of a point-process analysis framework to 
stride time data using two sample datasets from PhysioNet 
[13]. The first dataset [14], from 5 healthy young adults (age 
18–29), comprised self-paced and metronome-cued walks 
(~1700 strides) at each subject’s natural walking tempo. The 
second dataset [15] comprised a single walking excerpt 
(~300 strides) from 15 subjects: five healthy young (age 23–
29), five healthy elderly (age 60–77), and five PD patients 
(age 71–77). In both datasets, gait data (i.e., stride time 
intervals) was recorded via an ultra-thin force-sensitive 
switch placed in the insole of the right shoe while subjects 
walked around a large oval track (>160 m), and logged via a 
recorder strapped to the right ankle. 

II. METHODS 

A. Gait Interval Probability Model 
Suppose we are given a set of gait events (i.e., successive 

heel strike onsets) { }
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the jth gait interval (i.e., stride time interval), or 
equivalently, the waiting time until the next gait event. By 
treating the gait intervals as discrete events, we may develop 
a probabilistic point process model in continuous-time [9-
11]. 

Assuming history dependence, we assume that the waiting 
time t – gt until the next gait event follows a HDIG model, 
where for any time t > gt,: 
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Where gt denotes the previous gait event occurred before 
time t, θ > 0 denotes the shape parameter, and μt denotes the 
instantaneous stride mean that can be modeled as a generic 
function of the past (finite) gait events 

( )1 2, , ,t t t t hf GG GG GGμ − − −= … where GGt–j denotes the pre-
vious jth gait interval (or stride) occurred prior to the present 
time t. The history dependence is defined by expressing the 
instantaneous mean ( )GG tμ  as a linear combination of 
present and past gait intervals (in terms of an AR model), 
i.e., function f is linear. Here, we propose to include the 
nonlinear terms of past gait intervals in an attempt to 
improve the model fit. Specifically, the instantaneous mean 
μGG and standard deviation σGG are defined as 

 ( ) 0
1

p

t GG i t i
i

t a a GGμ μ −
=

≡ = + ∑  (2)  

  ( ) ( )
1/23

.GG
GG

t
t

μ
σ

θ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠  

(3) 

Given the proposed parametric model, the nonlinear 
indices of the gait interval (i.e., stride time, ST) and the gait 
variability (i.e., stride time variability, STV) will be defined 
as a time-varying function of the parameters 

0 1, , , ,pa a a θ⎡ ⎤= ⎣ ⎦θ … . 

B. Instantaneous Indices of Rate and Rate Variability 
Cadence, or stride rate (SR), may be defined as the 

reciprocal of the gait intervals. For GG measured in seconds, 
( ) 1

tr c t g −= −  (where c = 60 s/min) is a physiological  

measurement in strides per minute (spm). By the change-of-
variables formula [16], the SR probability 
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and the mean and the standard deviation of stride rate r (i.e., 
stride rate variability, SRV) can be derived. Essentially, the 
instantaneous indices of SR and SRV are characterized by 
the mean μSR and standard deviation σSR, respectively: 
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C. Local Maximum Likelihood Estimation  
It is known from point process theory [9], [10], [12] that 

the conditional intensity function ( )tλ  is related to the 

inter-event probability ( )p t  by a one-to-one transformation:  
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A local maximum likelihood method [17] is used to 
estimate the unknown time-varying parameter set θ. In 
estimating θ at time t, we take a local likelihood interval  
(t−l, t], where l is the length of the local likelihood 

observation interval. Within (t−l, t], we may observe n 
pulses, t−l < g1 < g2 < . . . < gn ≤ t. Then, we consider the 
local joint probability density of gt−l:t, where gt−l:t = 
 { g1, . . . , gun }. The log likelihood of the joint probability 
density is given by   
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where w(t − gj) = αt−gj, 0 < α < 1, is a weighting function 
for the local likelihood estimation. The weighting time 
constant α governs the degree of influence of a previous 
event observation gj on the local likelihood at time t. The 
second term of (8) represents the likelihood of partially 
observed interval since the last observed pulse gn (right 
censoring). To maximize the local log likelihood in (8) we 
use a Newton–Raphson method, and obtain the local 
maximum likelihood estimate of θ. Of note, the time 
increment Δ for computing the next θ from t to t+Δ can be 
chosen arbitrarily small, thus yielding instantaneous 
estimates of mean (ST, SR), and standard deviation (STV, 
SRV). 

Goodness-of-fit of the model can be performed based on 
the Kolmogorov–Smirnov (KS) test and the time-rescaling 
theorem [12]. The KS distance, defined as the maximum 
distance between the KS plot and the 45° line, is used to 
measure the lack-of-fit between the model and the data. We 
also compute the autocorrelation function of the transformed 
quantiles to check independence of the transformed GG 
intervals [9].  

III. RESULTS 
The results below illustrate the following features of our 

point-process model: (1) the ability to detect an underlying 
probability structure (i.e., history dependence) during self-
paced walks that is absent during metronome-cued walks,  
(2) the provision of instantaneous measures of stride time, 
stride time variability, stride rate, and stride rate variability, 
and (3) the automatic detection of outliers in a stride series. 

A. Analysis of Probability Structure 
Figure 1 presents the results of this test using data from a 

single subject from Dataset 1 under self-paced (a.) versus 
metronome-paced (b.) walking; specifically, stride series 
data (points) and the first moment of the inverse Gaussian 
distribution (trace) for the two stride events series (a.1, b.1), 
KS goodness-of-fit plots comparing order 1 (a.2, b.2) versus 
order 9 (a.3, b.3) models, and correlation functions of time-
rescaled GG intervals, zj, from the HDIG model fit for lags 
1–60 (order 1: a.4, b.4; order 9: a.5, b.5).  These results 
demonstrate the presence of correlation in the self-paced 
walking condition (order 1) that disappears under the 
metronome walking condition (order 1), and under both 
walking conditions when a higher model order is used (order 
9). The KS plots confirm goodness-of-fit for the higher 
model order. These findings illustrate the ability of our point 
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process model to capture the history-dependent structure of 
gait under different walking conditions [18], [19]. 

B. Assessment of Instantaneous Measures 
Figure 2 presents instantaneous ST, STV, SR, and SRV 

(4.) from three exemplar subjects from Dataset 2: young (a.), 
healthy elderly (b.), and PD (c.). The instantaneous series, in 
particular the variability series, are able to track changes at 
high time resolution, revealing new dynamic trends. For 
example, note the evident presence of an oscillation with a 
~100-s period, particularly marked in the Young and PD 
subject. Trends such as these may be speculatively 
associated with feedback control system compensations. 
Note that these variability changes are independent from 
large changes in mean gait interval due to the ability of our 
algorithm to discard outliers, as we discuss below. 

 

 
 

Figure 1. Self-paced versus metronome-paced walks in a single healthy 
subject. KS plots and correlation plots evaluate model properties with order 
1 versus order 9. 

C. Detection of Outliers 
Figure 2d presents ST and STV data from the PD patient 

in its original form. The clear presence of outlying strides 
(i.e., > 1200 ms) drastically affects any estimate of mean or 
variability, including instantaneous measures. (Here, we 
mean outliers due to experimental error than gait events that 
become systematically more or less variable as a function of 
walking conditions or task demands.)  The ability to 
automatically detect and remove outliers, based on the 
likelihood equation defined in (8), permits increased 
sensitivity in the assessment of instantaneous measures. The 
bottom panel in Fig. 2d illustrates the model’s automatic 
detection of outliers; when an outlier is detected (black 
circles on x-axis), the model suspends the analysis and 
retains the last estimate for 5 s.   

D. Statistical Analyses 
Figure 3 presents a statistical analysis (one-way analysis 

of variance) for the effect of Group (Young, Elderly, PD) on 
the average value of each instantaneous measure within the 
~300-second walk, for each subject. (Standard deviations 
are shown around the group means). The groups did not 

significantly differ for instantaneous ST or SR, but both 
showed a significant effect of Group on instantaneous STV  
(3b) and SRV (3d). Specifically, the PD patients showed 
significantly greater variability during their walks than both 
Young and Elderly subjects, consistent with traditional 
analyses (i.e., coefficient of variation) (e.g., [20]).  

 

 
 

Figure 2.  Comparison of instantaneous mean (ST, SR) and standard 
deviation (STV, SRV) for three exemplar subjects in Dataset 2. The effect of 
outliers (d.) is illustrated for the PD subject. 
 

Furthermore, the SRV measure was more sensitive in 
differentiating between Elderly and PD subjects; the effect 
size (partial η2) for explained group variance between 
Elderly and PD was 58.7% for STV and 88.4% for SRV. 
Finally, we took the ratio of the standard, window-based 
index of variability to our new estimate of total GG 
variability for each subject. As shown in Figure 3e, the 
ratios were greater than 1.0 (indicating larger variability 
estimates in the window-based estimate) for Young (1.15), 
Elderly (1.35), and PD (2.04). We interpret our lower 
estimates as reflective of the model’s ability to capture 
nonstationary dynamics and eliminate high-variance 
outliers. 

 
 

Figure 3.  One-way ANOVAs comparing group differences.  All tests have 
12 degrees of freedom. Error bars are SDs. 
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IV. DISCUSSION 
Our results can be summarized by three points. First, we 

demonstrated that our model is capable of capturing the 
underlying structure present in healthy, un-paced walking 
that disappears under metronome walking conditions (i.e., 
when gait is synchronized to an external stimulus). Previous 
analyses of self-paced versus metronome-paced walks in 
healthy subjects have revealed the presence of an underlying 
fractal or self-similar structure during self-paced walks [19] 
that disappears when subjects synchronize to an external 
auditory stimulus [18]. This striking change is hypothesized 
to be driven by a shift from an “externally-paced motor 
network” to an “internally-paced motor network,” which 
involve different brain regions (for a review, see [21]).   

Second, our model provides instantaneous measures of ST 
and STV as well as SR and SRV. These measures yield 
novel insights into the temporal dynamics of gait, including 
temporal profiles of gait that change as a function of age and 
disease. Furthermore, as SR and SRV are derived using the 
estimated instantaneous mean (μGG), they capture a distinct 
dynamic component of gait variability that permits and 
merits further exploration. 

Third, our model detects outliers based on a maximum 
likelihood estimation of the event series’ underlying 
probability structure, and suspends calculations for 5 s. This 
prevents an artificial inflation of variance due to a few large 
aberrant gait events, leading to increased sensitivity in 
detecting more subtle differences between, for example, 
healthy elderly versus PD patients. Previous time domain 
analyses of gait variability have used an arbitrary cutoff of  
> 3 SD from the median gait interval [2], [20]. 

Finally, we note that the ability to generate instantaneous 
measures of mean and variability opens up new avenues to  
explore the real time dynamics of human gait, including 
correlations with other behavioral or neural measures [22], 
analyses of gait patterns during clinical assessment (e.g., 
changing floor surfaces, moving through doorways, and 
turning) [7], and patient monitoring applications that could 
trigger rhythmic sensory cues or electronic compensatory 
devices (cf. [23]).  

Further work will seek to explore whether our measures 
change as a function of disease severity, including the 
potential of our model to detect gait abnormalities prior to 
detection using traditional clinical measures (e.g., [24]). 

V. CONCLUSION 
We present a new model of human gait which is based on 

the treatment of gait events (i.e., heel strikes) as a point 
process rather than a time series, modeling gait intervals 
using a history-dependent inverse Gaussian process with 
local maximum likelihood estimates of the model’s time-
varying parameters. The model provides a robust and 
coherent statistical model of two measures of gait, permits 
goodness-of-fit assessments, and yields instantaneous 
measures of stride time and stride rate, useful in future 
diagnostic or monitoring applications serving the growing 

millions affected by with movement disorders, such as 
Parkinson’s disease. 
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